V = {(1 -4 1 2); (4 -8 4 4); (-4 4 -5 -3); (2 -2 3 2)} u = (-4 2 -5 -2)
A vector u is a linear combinations of vectors v1, v2, ..., vn if there exist n scalars so u = a1•v1+a2•v2+...+an•vn. In practice this problem is reduced to solving a system of linear equations, where the unknowns are the scalars to determine, and the columns of the coefficient matrix of the system are the vectors of the set V, adding the vector u to compose the augmented matrix. If this system has solution, then a vector u can be expressed as a linear combination using the scalars provided for any particular solution (if there is an infinite number of solutions), or for the unique solution, if it is the case, according to the classification of the system.
┌ ┐ │ 1 4 -4 2 | -4 │ │ -4 -8 4 -2 | 2 │ │ 1 4 -5 3 | -5 │ │ 2 4 -3 2 | -2 │ └ ┘
r2 <———> r2 + 4•r1 r3 <———> r3 - r1 r4 <———> r4 - 2•r1 ┌ ┐ │ 1 4 -4 2 | -4 │ │ 0 8 -12 6 | -14 │ │ 0 0 -1 1 | -1 │ │ 0 -4 5 -2 | 6 │ └ ┘ r2 <———> r4 ┌ ┐ │ 1 4 -4 2 | -4 │ │ 0 -4 5 -2 | 6 │ │ 0 0 -1 1 | -1 │ │ 0 8 -12 6 | -14 │ └ ┘ r4 <———> r4 + 2•r2 ┌ ┐ │ 1 4 -4 2 | -4 │ │ 0 -4 5 -2 | 6 │ │ 0 0 -1 1 | -1 │ │ 0 0 -2 2 | -2 │ └ ┘ r4 <———> r4 - 2•r3 ┌ ┐ │ 1 4 -4 2 | -4 │ │ 0 -4 5 -2 | 6 │ │ 0 0 -1 1 | -1 │ │ 0 0 0 0 | 0 │ └ ┘
The rank of the matrices are equal, but less than the number of variables. There is an infinite number of solutions (The system is consistent dependent).
x+4y-4z+2w = -4 -4y+5z-2w = 6 -z+w = -1
{ w }
-z+w = -1 z = 1+w -4y+5z-2w = 6 y = (-6+5z-2w)/4 y = (-6+5•(1+w)-2w)/4 y = (-1+3w)/4 x+4y-4z+2w = -4 x = -4-4y+4z-2w x = -4-4•((-1+3w)/4)+4•(1+w)-2w x = 1-w
coef = {(1-w ; (-1+3w)/4 ; 1+w ; w) | w ∈ R }
coef = { (1 , -1/4 , 1 , 0) } coef = { (1 , -0.25 , 1 , 0) }